
Java norm
Version 1

7 April 2008

YAKA 2009 <yaka@epita.fr>

mailto:yaka@epita.fr

1

Copyright

This document is for internal use only at EPITA <http://www.epita.fr/>

Copyright c© 2009 Assistants <yaka@epita.fr>

� �
Copying is allowed only under these conditions:

• You must have downloaded your copy from the Assistants’ Intranet
<https://www.acu.epita.fr/intra/>.

• You must make sure you have the latest version of this document.
• It is your responsability to make sure that this document stays out of reach of students

or individuals outside your year (promotion).
 	

http://www.epita.fr/
mailto:yaka@epita.fr
https://www.acu.epita.fr/intra/

i

Table of Contents

1 Introduction . 2
1.1 Why Have Code Conventions . 2
1.2 Acknowledgments . 2

2 File Names . 3
2.1 File Suffixes . 3

3 File Organization . 4
3.1 Java Source Files . 4

3.1.1 Beginning Comments . 4
3.1.2 Package and Import Statements . 4
3.1.3 Class and Interface Declarations . 4

4 Indentation . 6
4.1 Line Length . 6
4.2 Wrapping Lines . 6

5 Comments . 8
5.1 Implementation Comment Formats . 8

5.1.1 Block Comments . 8
5.1.2 Single-Line Comments . 9
5.1.3 Trailing Comments . 9
5.1.4 End-Of-Line Comments . 9

5.2 Documentation Comments . 10

6 Declarations . 11
6.1 Number Per Line . 11
6.2 Initialization . 11
6.3 Placement . 11
6.4 Class and Interface Declarations . 12

7 Statements . 13
7.1 Simple Statements . 13
7.2 Compound Statements . 13
7.3 return Statements . 13
7.4 if, if-else, if else-if else Statements . 13
7.5 for Statements . 14
7.6 while Statements . 14
7.7 do-while Statements . 14
7.8 switch Statements . 14
7.9 try-catch Statements . 15

8 White Space . 16
8.1 Blank Lines . 16
8.2 Blank Spaces . 16

ii

9 Naming Conventions . 17
9.1 Packages . 17
9.2 Classes . 17
9.3 Interfaces . 17
9.4 Methods . 17
9.5 Variables . 17
9.6 Constants . 18

10 Programming Practices . 19
10.1 Providing Access to Instance and Class Variables . 19
10.2 Referring to Class Variables and Methods . 19
10.3 Constants . 19
10.4 Variable Assignments . 19
10.5 Miscellaneous Practices . 20

10.5.1 Parentheses . 20
10.5.2 Returning Values . 20
10.5.3 Expressions before ‘?’ in the Conditional Operator . 20
10.5.4 Special Comments . 20

11 Code Examples . 21
11.1 Java Source File Example . 21

12 Conclusion . 23

Chapter 1: Introduction 2

1 Introduction

1.1 Why Have Code Conventions

Code conventions are important to programmers for a number of reasons:
• 80% of the lifetime cost of a piece of software goes to maintenance.
• Hardly any software is maintained for its whole life by the original author.
• Code conventions improve the readability of the software, allowing engineers to un-

derstand new code more quickly and thoroughly.
• If you ship your source code as a product, you need to make sure it is as well packaged

and clean as any other product you create.

1.2 Acknowledgments

This document was inspired by the Java language coding standards presented in the
Java Language Specification, from Sun Microsystems, Inc. Major contributions are from
Peter King, Patrick Naughton, Mike DeMoney, Jonni Kanerva, Kathy Walrath, and Scott
Hommel.

Chapter 2: File Names 3

2 File Names

This section lists commonly used file suffixes and names.

2.1 File Suffixes

Java Software uses the following file suffixes:
Java source .java suffix.
Java bytecode has .class suffix.

Chapter 3: File Organization 4

3 File Organization

A file consists of sections that should be separated by blank lines and an optional comment
identifying each section. Files longer than 2000 lines are cumbersome and should be
avoided.

3.1 Java Source Files

Each Java source file contains a single public class or interface. When private classes and
interfaces are associated with a public class, you can put them in the same source file as
the public class. The public class should be the first class or interface in the file.

Java source files have the following ordering:

• Beginning comments (see "Beginning Comments")
• Package and Import statements
• Class and interface declarations (see "Class and Interface Declarations")

3.1.1 Beginning Comments

All source files should begin with a c-style comment that lists the class name, version
information, date, and copyright notice:

/*
* Classname
*
* Version information
*
* Date
*
* Copyright notice
*/

3.1.2 Package and Import Statements

The first non-comment line of most Java source files is a package statement. After that,
import statements can follow. For example:

package java.awt;

import java.awt.peer.CanvasPeer;

Note: The first component of a unique package name is always written in all-lowercase
ASCII letters and should be one of the top-level domain names, currently com, edu, gov,
mil, net, org, or one of the English two-letter codes identifying countries as specified in
ISO Standard 3166, 1981.

3.1.3 Class and Interface Declarations

The following table describes the parts of a class or interface declaration, in the order that
they should appear.

• Class/interface documentation comment (/**...*/): See "Documentation Comments"
for information on what should be in this comment.

• class or interface statement:

• Class/interface implementation comment (/*...*/), if necessary: This comment
should contain any class-wide or interface-wide information that wasn’t appropriate
for the class/interface documentation comment.

Chapter 3: File Organization 5

• Class (static) variables: First the public class variables, then the protected, then
package level (no access modifier), and then the private.

• Instance variables: First public, then protected, then package level (no access modi-
fier), and then private.

• Constructors:

• Methods: These methods should be grouped by functionality rather than by scope
or accessibility. For example, a private class method can be in between two public
instance methods. The goal is to make reading and understanding the code easier.

Chapter 4: Indentation 6

4 Indentation

Two spaces should be used as the unit of indentation.

4.1 Line Length

void lines longer than 80 characters, since they’re not handled well by many terminals and
tools.

Note: Examples for use in documentation should have a shorter line length-generally
no more than 70 characters.

4.2 Wrapping Lines

When an expression will not fit on a single line, break it according to these general prin-
ciples:
• Break after a comma.
• Break after a bracket.
• Break before an operator.
• Prefer higher-level breaks to lower-level breaks.
• Align the new line with the beginning of the expression at the same level on the

previous line.
• If the above rules lead to confusing code or to code that’s squished up against the

right margin, just indent 8 spaces instead.

Here are some examples of breaking method calls:
someMethod(longExpression1, longExpression2, longExpression3,

longExpression4, longExpression5);

var = someMethod1(longExpression1,
someMethod2(longExpression2,

longExpression3));

Following are two examples of breaking an arithmetic expression. The first is preferred,
since the break occurs outside the parenthesized expression, which is at a higher level.

longName1 = longName2 * (longName3 + longName4 - longName5)
+ 4 * longname6; // PREFER

longName1 = longName2 * (longName3 + longName4
- longName5) + 4 * longname6; // AVOID

Following are two examples of indenting method declarations. The first is the conven-
tional case. The second would shift the second and third lines to the far right if it used
conventional indentation, so instead it indents only 8 spaces.

//CONVENTIONAL INDENTATION
someMethod(int anArg, Object anotherArg, String yetAnotherArg,

Object andStillAnother)
{
...

}

//INDENT 8 SPACES TO AVOID VERY DEEP INDENTS
private static synchronized horkingLongMethodName(int anArg,

Object anotherArg, String yetAnotherArg,

Chapter 4: Indentation 7

Object andStillAnother)
{
...

}

Line wrapping for if statements should generally use the 8-space rule, since conventional
(4 space) indentation makes seeing the body difficult. For example:

//DON’T USE THIS INDENTATION
if ((condition1 && condition2)

|| (condition3 && condition4)
||!(condition5 && condition6)) { //BAD WRAPS
doSomethingAboutIt(); //MAKE THIS LINE EASY TO MISS

}

//USE THIS INDENTATION INSTEAD
if ((condition1 && condition2)

|| (condition3 && condition4)
||!(condition5 && condition6))

{
doSomethingAboutIt();

}

//OR USE THIS
if ((condition1 && condition2) || (condition3 && condition4)

||!(condition5 && condition6))
{

doSomethingAboutIt();
}

Here are three acceptable ways to format ternary expressions:
alpha = (aLongBooleanExpression) ? beta : gamma;

alpha = (aLongBooleanExpression) ? beta
: gamma;

alpha = (aLongBooleanExpression)
? beta
: gamma;

Chapter 5: Comments 8

5 Comments

Java programs can have two kinds of comments: implementation comments and documen-
tation comments. Implementation comments are those found in C++, which are delimited
by /*...*/, and //. Documentation comments (known as "doc comments") are Java-only,
and are delimited by /**...*/. Doc comments can be extracted to HTML files using the
javadoc tool.

Implementation comments are meant for commenting out code or for comments about
the particular implementation. Doc comments are meant to describe the specification of
the code, from an implementation-free perspective. to be read by developers who might
not necessarily have the source code at hand.

Comments should be used to give overviews of code and provide additional information
that is not readily available in the code itself. Comments should contain only information
that is relevant to reading and understanding the program. For example, information
about how the corresponding package is built or in what directory it resides should not
be included as a comment.

Discussion of nontrivial or nonobvious design decisions is appropriate, but avoid dupli-
cating information that is present in (and clear from) the code. It is too easy for redundant
comments to get out of date. In general, avoid any comments that are likely to get out of
date as the code evolves.

Note:The frequency of comments sometimes reflects poor quality of code. When you
feel compelled to add a comment, consider rewriting the code to make it clearer.

Comments should not be enclosed in large boxes drawn with asterisks or other charac-
ters. Comments should never include special characters such as form-feed and backspace.

5.1 Implementation Comment Formats

Programs can have four styles of implementation comments: block, single-line, trailing,
and end-of-line.

5.1.1 Block Comments

Block comments are used to provide descriptions of files, methods, data structures and
algorithms. Block comments may be used at the beginning of each file and before each
method. They can also be used in other places, such as within methods. Block comments
inside a function or method should be indented to the same level as the code they describe.

A block comment should be preceded by a blank line to set it apart from the rest of
the code.

/*
* Here is a block comment.
*/

Block comments can start with /*-, which is recognized by indent(1) as the beginning
of a block comment that should not be reformatted. Example:

/*- * Here is a block comment with some very special * formatting that I want indent(1)
to ignore. * * one * two * three */

Note: If you don’t use indent(1), you don’t have to use /*- in your code or make any
other concessions to the possibility that someone else might run indent(1) on your code.

See also "Documentation Comments"

Chapter 5: Comments 9

5.1.2 Single-Line Comments

Short comments can appear on a single line indented to the level of the code that follows. If
a comment can’t be written in a single line, it should follow the block comment format. A
single-line comment should be preceded by a blank line. Here’s an example of a single-line
comment in Java code (also see "Documentation Comments"):

if (condition)
{
/* Handle the condition. */
...

}

5.1.3 Trailing Comments

Very short comments can appear on the same line as the code they describe, but should be
shifted far enough to separate them from the statements. If more than one short comment
appears in a chunk of code, they should all be indented to the same tab setting.

Here’s an example of a trailing comment in Java code:

if (a == 2)
{

return TRUE; /* special case */
}
else
{

return isPrime(a); /* works only for odd a */
}

5.1.4 End-Of-Line Comments

The // comment delimiter can comment out a complete line or only a partial line. It
shouldn’t be used on consecutive multiple lines for text comments; however, it can be
used in consecutive multiple lines for commenting out sections of code. Examples of all
three styles follow:

if (foo > 1)
{
// Do a double-flip.
...

}
else
{
return false; // Explain why here.

}
//if (bar > 1)
//{
//
// // Do a triple-flip.
// ...
//}
//else
//{
// return false;
//}

Chapter 5: Comments 10

5.2 Documentation Comments

Note: See "Java Source File Example" for examples of the comment formats described
here.

For further details, see "How to Write Doc Comments for Javadoc" which includes
information on the doc comment tags (@return, @param, @see):

http://java.sun.com/javadoc/writingdoccomments
For further details about doc comments and javadoc, see the javadoc home page at:
http://java.sun.com/javadoc/
Doc comments describe Java classes, interfaces, constructors, methods, and fields. Each

doc comment is set inside the comment delimiters /**...*/, with one comment per class,
interface, or member. This comment should appear just before the declaration:

/**
* The Example class provides ...
*/
public class Example
{
...

Notice that top-level classes and interfaces are not indented, while their members are.
The first line of doc comment (/**) for classes and interfaces is not indented; subsequent
doc comment lines each have 1 space of indentation (to vertically align the asterisks).
Members, including constructors, have 4 spaces for the first doc comment line and 5
spaces thereafter.

If you need to give information about a class, interface, variable, or method that isn’t
appropriate for documentation, use an implementation block comment or single-line com-
ment immediately after the declaration. For example, details about the implementation
of a class should go in in such an implementation block comment following the class
statement, not in the class doc comment.

Doc comments should not be positioned inside a method or constructor definition
block, because Java associates documentation comments with the first declaration after
the comment.

Chapter 6: Declarations 11

6 Declarations

6.1 Number Per Line

One declaration per line is recommended since it encourages commenting. In other words,
int level; // indentation level
int size; // size of table

is preferred over
int level, size;

Do not put different types on the same line. Example:
int foo, fooarray[]; //WRONG!

Note: The examples above use one space between the type and the identifier. Another
acceptable alternative is to use tabs, e.g.:

int level; // indentation level
int size; // size of table
Object currentEntry; // currently selected table entry

6.2 Initialization

Try to initialize local variables where they’re declared. The only reason not to initialize a
variable where it’s declared is if the initial value depends on some computation occurring
first.

6.3 Placement

Put declarations only at the beginning of blocks. (A block is any code surrounded by curly
braces "" and "".) Don’t wait to declare variables until their first use; it can confuse the
unwary programmer and hamper code portability within the scope.

void myMethod()
{

int int1 = 0; // beginning of method block

if (condition)
{

int int2 = 0; // beginning of "if" block
...

}
}

The one exception to the rule is indexes of for loops, which in Java can be declared in
the for statement:

for (int i = 0; i < maxLoops; i++) { ... }

Avoid local declarations that hide declarations at higher levels. For example, do not
declare the same variable name in an inner block:

int count;
...
myMethod()
{

if (condition)
{

int count = 0; // AVOID!

Chapter 6: Declarations 12

...
}
...

}

6.4 Class and Interface Declarations

When coding Java classes and interfaces, the following formatting rules should be followed:
• No space between a method name and the parenthesis "(" starting its parameter list
• Open brace "{" appears on a single line * Closing brace "}" starts a line by itself

indented to match its corresponding opening statement, except when it is a null
statement the "}" should appear immediately after the "{"

class Sample extends Object
{

int ivar1;
int ivar2;

Sample(int i, int j)
{

ivar1 = i;
ivar2 = j;

}

int emptyMethod() {}

...
}

• Methods are separated by a blank line

Chapter 7: Statements 13

7 Statements

7.1 Simple Statements

Each line should contain at most one statement. Example:

argv++; // Correct
argc--; // Correct
argv++; argc--; // AVOID!

7.2 Compound Statements

Compound statements are statements that contain lists of statements enclosed in braces
"{ statements }". See the following sections for examples.

• The enclosed statements should be indented one more level than the compound state-
ment.

• The opening brace should be alone on a line; the closing brace should begin a line
and be indented to the beginning of the compound statement.

• Braces are used around all statements, even single statements, when they are part
of a control structure, such as a if-else or for statement. This makes it easier to add
statements without accidentally introducing bugs due to forgetting to add braces.

7.3 return Statements

A return statement with a value should not use parentheses unless they make the return
value more obvious in some way. Example:

return;

return myDisk.size();

return (size ? size : defaultSize);

7.4 if, if-else, if else-if else Statements

The if-else class of statements should have the following form:

if (condition)
{
statements;

}

if (condition)
{
statements;

}
else
{
statements;

}

if (condition)
{
statements;

Chapter 7: Statements 14

}
else
if (condition)
{

statements;
}
else
{
statements;

}

Note: if statements always use braces . Avoid the following error-prone form:

if (condition) //AVOID! THIS OMITS THE BRACES {}!
statement;

7.5 for Statements

A for statement should have the following form:

for (initialization; condition; update)
{

statements;
}

An empty for statement (one in which all the work is done in the initialization, condi-
tion, and update clauses) should have the following form:

for (initialization; condition; update);

When using the comma operator in the initialization or update clause of a for statement,
avoid the complexity of using more than three variables. If needed, use separate statements
before the for loop (for the initialization clause) or at the end of the loop (for the update
clause).

7.6 while Statements

A while statement should have the following form:

while (condition)
{
statements;

}

An empty while statement should have the following form:

while (condition);

7.7 do-while Statements

A do-while statement should have the following form:

do
{
statements;

} while (condition);

7.8 switch Statements

A switch statement should have the following form:

Chapter 7: Statements 15

switch (condition)
{
case ABC:
statements;
/* falls through */

case DEF:
statements;
break;

case XYZ:
statements;
break;

default:
statements;
break;

}

Every time a case falls through (doesn’t include a break statement), add a comment
where the break statement would normally be. This is shown in the preceding code
example with the /* falls through */ comment.

Every switch statement should include a default case. The break in the default case is
redundant, but it prevents a fall-through error if later another case is added.

7.9 try-catch Statements

A try-catch statement should have the following format:
try
{
statements;

} catch (ExceptionClass e)
{
statements;

}

A try-catch statement may also be followed by finally, which executes regardless of
whether or not the try block has completed successfully.

try
{
statements;

} catch (ExceptionClass e)
{
statements;

} finally
{
statements;

}

Chapter 8: White Space 16

8 White Space

8.1 Blank Lines

Blank lines improve readability by setting off sections of code that are logically related.
Two blank lines should always be used in the following circumstances:
• Between sections of a source file
• Between class and interface definitions

One blank line should always be used in the following circumstances:
• Between methods
• Between the local variables in a method and its first statement
• Before a block or single-line comment
• Between logical sections inside a method to improve readability

8.2 Blank Spaces

Blank spaces should be used in the following circumstances:
• A keyword followed by a parenthesis should be separated by a space. Example:

while (true)
{
...

}

Note that a blank space should not be used between a method name and its opening
parenthesis. This helps to distinguish keywords from method calls.

• A blank space should appear after commas in argument lists.
• All binary operators except . should be separated from their operands by spaces.

Blank spaces should never separate unary operators such as unary minus, increment
("++"), and decrement ("–") from their operands. Example:

a += c + d;
a = (a + b) / (c * d);

while (d++ = s++)
{
n++;

}
printSize("size is " + foo + "\n");

• The expressions in a for statement should be separated by blank spaces. Example:
for (expr1; expr2; expr3)

• Casts should be followed by a blank space. Examples:
myMethod((byte) aNum, (Object) x);
myMethod((int) (cp + 5), ((int) (i + 3))

+ 1);

Chapter 9: Naming Conventions 17

9 Naming Conventions

Naming conventions make programs more understandable by making them easier to read.
They can also give information about the function of the identifier-for example, whether
it’s a constant, package, or class-which can be helpful in understanding the code.

9.1 Packages

The prefix of a unique package name is always written in all-lowercase ASCII letters and
should be one of the top-level domain names, currently com, edu, gov, mil, net, org, or
one of the English two-letter codes identifying countries as specified in ISO Standard 3166,
1981.

Subsequent components of the package name vary according to an organization’s own
internal naming conventions. Such conventions might specify that certain directory name
components be division, department, project, machine, or login names.

com.sun.eng
com.apple.quicktime.v2
edu.cmu.cs.bovik.cheese

9.2 Classes

Class names should be nouns, in mixed case with the first letter of each internal word
capitalized. Try to keep your class names simple and descriptive. Use whole words-avoid
acronyms and abbreviations (unless the abbreviation is much more widely used than the
long form, such as URL or HTML).

class Raster;
class ImageSprite;

9.3 Interfaces

Interface names should be capitalized like class names, and begin with a "I"

interface IRasterDelegate;
interface IStoring;

9.4 Methods

Methods should be verbs, in mixed case with the first letter lowercase, with the first letter
of each internal word capitalized.

run();
runFast();
getBackground();

9.5 Variables

Except for variables, all instance, class, and class constants are in mixed case with a
lowercase first letter. Internal words start with capital letters. Variable names should not
start with underscore or dollar sign $ characters, even though both are allowed.

Variable names should be short yet meaningful. The choice of a variable name should
be mnemonic- that is, designed to indicate to the casual observer the intent of its use. One-
character variable names should be avoided except for temporary "throwaway" variables.
Common names for temporary variables are i, j, k, m, and n for integers; c, d, and e for
characters.

Chapter 9: Naming Conventions 18

int i;
char c;
float myWidth;

9.6 Constants

The names of variables declared class constants and of ANSI constants should be all
uppercase with words separated by underscores (" "). (ANSI constants should be avoided,
for ease of debugging.)
static final int MIN_WIDTH = 4;
static final int MAX_WIDTH = 999;
static final int GET_THE_CPU = 1;

Chapter 10: Programming Practices 19

10 Programming Practices

10.1 Providing Access to Instance and Class Variables

Don’t make any instance or class variable public without good reason. Often, instance
variables don’t need to be explicitly set or gotten-often that happens as a side effect of
method calls.

One example of appropriate public instance variables is the case where the class is
essentially a data structure, with no behavior. In other words, if you would have used
a struct instead of a class (if Java supported struct), then it’s appropriate to make the
class’s instance variables public.

10.2 Referring to Class Variables and Methods

Avoid using an object to access a class (static) variable or method. Use a class name
instead. For example:

classMethod(); //OK
AClass.classMethod(); //OK
anObject.classMethod(); //AVOID!

10.3 Constants

Numerical constants (literals) should not be coded directly, except for -1, 0, and 1, which
can appear in a for loop as counter values.

10.4 Variable Assignments

Avoid assigning several variables to the same value in a single statement. It is hard to
read. Example:

fooBar.fChar = barFoo.lchar = ’c’; // AVOID!

Do not use the assignment operator in a place where it can be easily confused with the
equality operator. Example:

if (c++ = d++) // AVOID! (Java disallows)
{
...

}

should be written as

if ((c++ = d++) != 0)
{
...

}

Do not use embedded assignments in an attempt to improve run-time performance.
This is the job of the compiler. Example:

d = (a = b + c) + r; // AVOID!

should be written as

a = b + c;
d = a + r;

Chapter 10: Programming Practices 20

10.5 Miscellaneous Practices

10.5.1 Parentheses

It is generally a good idea to use parentheses liberally in expressions involving mixed
operators to avoid operator precedence problems. Even if the operator precedence seems
clear to you, it might not be to others-you shouldn’t assume that other programmers know
precedence as well as you do.

if (a == b && c == d) // AVOID!
if ((a == b) && (c == d)) // RIGHT

10.5.2 Returning Values

Try to make the structure of your program match the intent. Example:
if (booleanExpression)
{
return true;

}
else
{
return false;

}

should instead be written as
return booleanExpression;

Similarly,
if (condition)
{
return x;

}
return y;

should be written as
return (condition ? x : y);

10.5.3 Expressions before ‘?’ in the Conditional Operator

If an expression containing a binary operator appears before the ? in the ternary ?:
operator, it should be parenthesized. Example:

(x >= 0) ? x : -x;

10.5.4 Special Comments

Use XXX in a comment to flag something that is bogus but works. Use FIXME to flag
something that is bogus and broken.

Chapter 11: Code Examples 21

11 Code Examples

11.1 Java Source File Example

The following example shows how to format a Java source file containing a single public
class. Interfaces are formatted similarly. For more information, see "Class and Interface
Declarations" and "Documentation Comments".

/*
* @(#)Blah.java 1.82 99/03/18
*
* Copyright (c) 1994-1999 Sun Microsystems, Inc.
* 901 San Antonio Road, Palo Alto, California, 94303, U.S.A.
* All rights reserved.
*
* This software is the confidential and proprietary information of Sun
* Microsystems, Inc. ("Confidential Information"). You shall not
* disclose such Confidential Information and shall use it only in
* accordance with the terms of the license agreement you entered into
* with Sun.
*/

package java.blah;

import java.blah.blahdy.BlahBlah;

/**
* Class description goes here.
*
* @version 1.82 18 Mar 1999
* @author Firstname Lastname
*/
public class Blah extends SomeClass implements IMyInterface
{
/* A class implementation comment can go here. */

/** classVar1 documentation comment */
public static int classVar1;

/**
* classVar2 documentation comment that happens to be
* more than one line long
*/
private static Object classVar2;

/** instanceVar1 documentation comment */
public Object instanceVar1;

/** instanceVar2 documentation comment */
protected int instanceVar2;

/** instanceVar3 documentation comment */

Chapter 11: Code Examples 22

private Object[] instanceVar3;

/**
* ...constructor Blah documentation comment...
*/
public Blah()
{
// ...implementation goes here...

}

/**
* ...method doSomething documentation comment...
*/
public void doSomething()
{
// ...implementation goes here...

}

/**
* ...method doSomethingElse documentation comment...
* @param someParam description
*/
public void doSomethingElse(Object someParam)
{
// ...implementation goes here...

}
}

Chapter 12: Conclusion 23

12 Conclusion

Please don’t make ugly code !!!

	Introduction
	Why Have Code Conventions
	Acknowledgments

	File Names
	File Suffixes

	File Organization
	Java Source Files
	Beginning Comments
	Package and Import Statements
	Class and Interface Declarations

	Indentation
	Line Length
	Wrapping Lines

	Comments
	Implementation Comment Formats
	Block Comments
	Single-Line Comments
	Trailing Comments
	End-Of-Line Comments

	Documentation Comments

	Declarations
	Number Per Line
	Initialization
	Placement
	Class and Interface Declarations

	Statements
	Simple Statements
	Compound Statements
	return Statements
	if, if-else, if else-if else Statements
	for Statements
	while Statements
	do-while Statements
	switch Statements
	try-catch Statements

	White Space
	Blank Lines
	Blank Spaces

	Naming Conventions
	Packages
	Classes
	Interfaces
	Methods
	Variables
	Constants

	Programming Practices
	Providing Access to Instance and Class Variables
	Referring to Class Variables and Methods
	Constants
	Variable Assignments
	Miscellaneous Practices
	Parentheses
	Returning Values
	Expressions before `?' in the Conditional Operator
	Special Comments

	Code Examples
	Java Source File Example

	Conclusion

